Decentralized Systems Engineering

CS-438 — Fall 2024

DEDI S Pierluca Borso-Tan and Bryan Ford E P F L

Credits: C. Arad, ID2210/KTH, Consensys, M. Kleppman



Miscellaneous updates (HW, evals)

e Congrats, most of you scored 100% on HWO !
e Be sure to work on the correct branch, i.e. “hwl1” for homework 1 ©

e HWa1 code listing 1 had a mistake, the PDF was updated
e HW1 comes with benchmarks and hidden tests

o Benchmarks count for 5%
o Hidden tests for 10%

e Project deadline — this Sunday !

e Class evaluations this week: please participate!
All (constructive) feedback is welcome, help us improve!



So far...

e Decentralized communication
e Unstructured & structured search

e Can we attack structured search systems?



Finishing up. ..
Chord DHT — Possible attacks
e Sybil attacks
e Eclipse attacks
e Churn attacks
e Adversarial routing

e Denial of Service



So far...

e Decentralized communication
e Unstructured & structured search

e Can we attack structured search systems?
Yes, but they're still useful!

e How do we handle the actual underlying data ?



Storing data (reliably)

e Local machine
RAID, FEC / ECC / erasure codes, ...

e Distributed
Block- , filesystem- or object-level access (SAN, NAS, AWS S3)
Redundancy
Concurrency control
Sharding

e Decentralized
?7?? > today’s lecture



Decentralized Storage & Distribution

BitTorrent, IPFS and CRDTs

(Homework 2)



CAP Theorem — A reminder

a.k.a. Brewer’s Theorem
Definitions:

e C =read last write (or error!)
e A =requests get non-error reply
e P =dropped/delayed packets

Trade-offs beyond CAP:
e Granularity of CAP

e Latency vs consistency

e Eventual consistency



Storage & distribution — Goals & Challenges (1/2)

Availability

Consistency

Scalability, load-balancing

Modifiability / mutability

robust to churn, individual node failures, etc.

how do we stay in sync ? weak ? strong ?

efficiency in bandwidth & storage space

(optionally) how do we manage multi-writers ?



Storage & distribution — Goals & Challenges (2/2)

Malicious security

InfoSec (CIA triad)

(Logical) data organization

(Physical) data location

eclipse, tampering & rollback attacks

access control, logging, accountability

“flat™? files? directories? databases? graph?

where should it be stored?



Building BitTorrent : specifications

e Distribute a large, static (immutable) files

... from a source node with limited bandwidth

... to a large number of users

... as fast as possible !
e Scalable: 22% up- and 3% downstream of global internet traffic (Oct. 2023)
e Assume users are self-interested = don’t assume they want to help

How do we build this ? Core intuition ?



BitTorrent : distribution

0z




Building BitTorrent : Sub-problems

Advertising a file

Finding peers to download from

Verifying integrity of large files (or parts of them)
e Optimizing performance

e Aligning incentives (downloaders vs. uploaders)



Distribution & integrity of (large) files
A client should be able to verify:

e parts of a (large) file, as they are downloaded
e the whole file (after download)

Solution ?

Merkle Tree

—> Chunking

- Hash tree

P

Merkle
root

_ Merkle

branches

Merkle

7 leaves

.. Data
| Nodes



BitTorrent : Bootstrapping / finding peers

Two options:
e Trackers

e Mainline DHT (based on Kademlia)

o Key: Merkle root

o Value: the list of peers having (or downloading) the file

Join the swarm and connect to ~ 80 peers



BitTorrent : Publishing new content

“Prepare” the file (chunk & build Merkle tree)
Register with a “tracker”

Publish a .torrent file or magnet (DHT) link

Merkle Tree

P

Merkle
root

_ Merkle

branches

Merkle

7 leaves

.. Data
| Nodes



BitTorrent : Performance & Incentives

e Download rarest data blocks (“chunks”) first — entropy maximization
e Tit-for-Tat strategy (“choking” protocol)

“‘chokes” (punishes) peers that are not uploading

“‘unchokes” peers with the highest upload rates

“optimistic unchoking” looks for better/bootstrapping peers

e Make the download rate proportional to the upload rate for each peer



BitTorrent-inspired solutions

Servers

Games

OS

’ 1]

Twitter's “Murder” server deployment system
Facebook’s

“Blizzard Downloader” - World of Warcraft, Diablo Il
Wargaming's - World of Tanks, World of Warplanes, etc.

Windows Update
Others have tried ... and failed (e.g. “DebTorrent”)

Interplanetary Filesystem (IPFS)



BitTorrent limits

Why did DebTorrent fail to materialize ?

e lll-suited for small files (overhead)

e lll-suited for sharing overlapping sets of data (across torrents)
e Data is immutable (and not re-usable across torrents)

e Locality of peers is ignored — ISPs do traffic-shaping

For DebTorrent, both “1 huge torrent” or “1M+ small ones” = inefficient



IPFS — Inter-Planetary File System

e Protocol for P2P distributed file system, fully decentralized
e Designed to address (perceived) flaws in HTTP

e Deployed at massive scale
2024: >70k servers, millions of unique weekly users, 23 EiB capacity (2 stored)

e A decentralized file system inspired by:
Kademlia DHT
BitTorrent — block exchange
Git versioning
Self-certifying filesystems



Reminder: Git object database

Commit object Tree object Blob object
1f7a7a
“version 2"
- 4
second commit tree ./neW.tXt
new.txt fa49be
R hew file"

fdfafe SELEEL
first commit test.txt —» "yersion 1" [test.txt




Tad10e 3c4e9c
third commit tree

caclca B155eb
second commit tree

d8329f
tree

bak

new.txt

test.txt

™~

test.txt

new.txt

test.txt —p»

™

1f7a7a
"version 2"

fa49b0

"new file" <

83baae
“version 1"

bak/test.txt
Jnew.txt
Jtest.txt

Jtest.txt
Jnew.txt

Jtest.txt



IPFS: Representing a filesystem in a DHT

e Everything is immutable

e All objects are self-certifying (files, links, folders, changes)
ID is computed based on object’s hash

e Any IPFS object (file, folder) is represented in the same way:
type IPFSObject struct { type IPFSLink struct {

// array of links Name string // target’s name
links []IPFSLink
Hash Multihash // ... hash
// opaque content data
data []byte Size int // ... size



Also known as:

IPFS: Representing a file < 256kB ablob !

{
“Links”: [],
“Data”: “\u0008\uovo2\uedl2\rHello World!\n\uool8\r”

}

“Hello World!/n”



Also known as:

IPFS: Representing a file > 256kB a list |

{

“Links™: [
{“Name”: “”,“Hash”: “QmYSK2Jy...”,“Size”: 262158},
{“Name”: “”,“Hash”: “QmQeUqdj...”,“Size”: 262158},
{“Name”: “”,“Hash”: “Qma98bkl...”,“Size”: 178947}

]J .
“Data”: “\u0oe8\u0e02\ueel8* \uoelo \uevle \n”

}

“/u0008...”



Also known as:

IPFS: representing a directory atree!
Jbigfile.js
D Jmy_dir/my_file.txt
Parent : / d / fl
directory . Jmy_dir/Testing.txt
wefte® Jhello.txt
ﬁ ]
Large file i=tagata z
Idcatiohs)



Also known as:

IPFS: Versioning a commit !

o Git-like

e Build a Merkle DAG (Directed Acyclic Graph)

e Build a “snapshot” of the current state

e Hash of both content and its parent commit’s hash

e Creates a Git-like log of versions



IPFS: Naming (mutable) data

Objects are immutable, so:

e Use a separate namespace for mutable data

e Use mutable, signed pointers to immutable data

e Not content-addressable: advertise link on routing system

e Built-in limit to rollback attacks



Shifting Paradigm: Local-First Software

What do these 3 applications have in common ?
o Git

e Google Docs

e Apple Notes

They work offline and you (nearly) get the full experience !

How?
e Multi-version concurrency control
l.e. how do you “merge” versions that forked ?



Local-First Software

Goals

Local client is first-class citizen
Works offline

Eventual consistency

Ideally: can handle forks

What tool do we need to make this happen?

Conflict-Free Replicate Data Types
Data structure + Algorithm + Protocol



Conflict-Free Replicated Data Types (CRDTS)

Various types:

e Values e Lists
e Counters e Log-based
e Sets e Text

Two main categories:

e Operation-based — commutative replicated data types (CmRDTS)
e State-based — convergent replicate data types (CvRDTS)

- Theoretically equivalent



State-based CRDT — Formalism

Let U be the set of update operations, and V the set of values.

A state-based CRDT is a 5-tuple (S, s°, q, u, m), where:

* S is the set of states;

« sO0 € S is the initial state;

*q:S — Visthe query function
u:S xU— Sisthe update function

*m:S xS — Sisthe merge function



Next steps - Readings
Mandatory:
e Incentives Build Robustness in BitTorrent
e Ivy: A Read/Write Peer-to-Peer File System
Recommended (Engineering):
e IPFS: Content Addressed, Versioned, P2P file system
e Peritext: A CRDT for Rich-Text Collaboration

... and a few others for the curious among you ...

- Use Friday’s session to ask questions

33



	Search (hour 1)
	Slide 1: Decentralized Systems Engineering
	Slide 2: Miscellaneous updates (HW, evals)
	Slide 3: So far...
	Slide 4: Finishing up… Chord DHT – Possible attacks
	Slide 5: So far...
	Slide 6: Storing data (reliably)
	Slide 7: Decentralized Storage & Distribution
	Slide 8: CAP Theorem – A reminder a.k.a. Brewer’s Theorem
	Slide 9: Storage & distribution – Goals & Challenges (1/2)
	Slide 10: Storage & distribution – Goals & Challenges (2/2)

	BitTorrent
	Slide 11: Building BitTorrent : specifications
	Slide 12: BitTorrent : distribution
	Slide 13: Building BitTorrent : Sub-problems
	Slide 14: Distribution & integrity of (large) files
	Slide 15: BitTorrent : Bootstrapping / finding peers
	Slide 16: BitTorrent : Publishing new content
	Slide 17: BitTorrent : Performance & Incentives
	Slide 18: BitTorrent-inspired solutions
	Slide 19: BitTorrent limits 

	IPFS
	Slide 20: IPFS – Inter-Planetary File System
	Slide 21: Reminder: Git object database
	Slide 22
	Slide 23: IPFS: Representing a filesystem in a DHT
	Slide 24: IPFS: Representing a file < 256kB
	Slide 25: IPFS: Representing a file > 256kB
	Slide 26: IPFS: representing a directory
	Slide 27: IPFS: Versioning
	Slide 28: IPFS: Naming (mutable) data

	CRDTs
	Slide 29: Shifting Paradigm: Local-First Software
	Slide 30: Local-First Software 
	Slide 31: Conflict-Free Replicated Data Types (CRDTs)
	Slide 32: State-based CRDT – Formalism
	Slide 33: Next steps - Readings 


