
Decentralized Systems Engineering

CS-438 – Fall 2024

Pierluca Borsò-Tan and Bryan Ford

Credits: C. Arad, ID2210/KTH, Consensys, M. Kleppman

Miscellaneous updates (HW, evals)

● Congrats, most of you scored 100% on HW0 !

● Be sure to work on the correct branch, i.e. “hw1” for homework 1 ☺

● HW1 code listing 1 had a mistake, the PDF was updated

● HW1 comes with benchmarks and hidden tests

○ Benchmarks count for 5%

○ Hidden tests for 10%

● Project deadline – this Sunday !

● Class evaluations this week: please participate!

All (constructive) feedback is welcome, help us improve!

So far...

● Decentralized communication

● Unstructured & structured search

● Can we attack structured search systems?

Finishing up…

Chord DHT – Possible attacks

● Churn attacks

● Sybil attacks

● Eclipse attacks

● Adversarial routing

● Denial of Service

So far...

● Decentralized communication

● Unstructured & structured search

● Can we attack structured search systems?

Yes, but they’re still useful!

● How do we handle the actual underlying data ?

Storing data (reliably)

● Local machine

RAID, FEC / ECC / erasure codes, …

● Distributed

Block- , filesystem- or object-level access (SAN, NAS, AWS S3)

Redundancy

Concurrency control

Sharding

● Decentralized

??? → today’s lecture

Decentralized Storage & Distribution

BitTorrent, IPFS and CRDTs

(Homework 2)

CAP Theorem – A reminder
a.k.a. Brewer’s Theorem

Trade-offs beyond CAP:

● Granularity of CAP

● Latency vs consistency

● Eventual consistency

Definitions:

● C = read last write (or error!)

● A = requests get non-error reply

● P = dropped/delayed packets

Storage & distribution – Goals & Challenges (1/2)

● Availability

● Consistency

● Scalability, load-balancing

● Modifiability / mutability

robust to churn, individual node failures, etc.

how do we stay in sync ? weak ? strong ?

efficiency in bandwidth & storage space

(optionally) how do we manage multi-writers ?

Storage & distribution – Goals & Challenges (2/2)

● Malicious security

● InfoSec (CIA triad)

● (Logical) data organization

● (Physical) data location

eclipse, tampering & rollback attacks

access control, logging, accountability

“flat”? files? directories? databases? graph?

where should it be stored?

Building BitTorrent : specifications

● Distribute a large, static (immutable) files

… from a source node with limited bandwidth

… to a large number of users

… as fast as possible !

● Scalable: 22% up- and 3% downstream of global internet traffic (Oct. 2023)

● Assume users are self-interested = don’t assume they want to help

How do we build this ? Core intuition ?

BitTorrent : distribution

Building BitTorrent : Sub-problems

● Advertising a file

● Finding peers to download from

● Verifying integrity of large files (or parts of them)

● Optimizing performance

● Aligning incentives (downloaders vs. uploaders)

Distribution & integrity of (large) files

A client should be able to verify:

● parts of a (large) file, as they are downloaded

● the whole file (after download)

Solution ?

→ Chunking

→ Hash tree

BitTorrent : Bootstrapping / finding peers

Two options:

● Trackers

● Mainline DHT (based on Kademlia)

○ Key: Merkle root

○ Value: the list of peers having (or downloading) the file

Join the swarm and connect to ~ 80 peers

BitTorrent : Publishing new content

● “Prepare” the file (chunk & build Merkle tree)

● Register with a “tracker”

● Publish a .torrent file or magnet (DHT) link

BitTorrent : Performance & Incentives

● Download rarest data blocks (“chunks”) first – entropy maximization

● Tit-for-Tat strategy (“choking” protocol)

“chokes” (punishes) peers that are not uploading

“unchokes” peers with the highest upload rates

“optimistic unchoking” looks for better/bootstrapping peers

● Make the download rate proportional to the upload rate for each peer

BitTorrent-inspired solutions

● Twitter’s “Murder” server deployment system

● Facebook’s

● “Blizzard Downloader” - World of Warcraft, Diablo III

● Wargaming’s - World of Tanks, World of Warplanes, etc.

● Windows Update

● Others have tried … and failed (e.g. “DebTorrent”)

● Interplanetary Filesystem (IPFS)

Servers

Games

OS

BitTorrent limits

Why did DebTorrent fail to materialize ?

● Ill-suited for small files (overhead)

● Ill-suited for sharing overlapping sets of data (across torrents)

● Data is immutable (and not re-usable across torrents)

● Locality of peers is ignored – ISPs do traffic-shaping

For DebTorrent, both “1 huge torrent” or “1M+ small ones” = inefficient

IPFS – Inter-Planetary File System

● Protocol for P2P distributed file system, fully decentralized

● Designed to address (perceived) flaws in HTTP

● Deployed at massive scale

2024: >70k servers, millions of unique weekly users, 23 EiB capacity (2 stored)

● A decentralized file system inspired by:

Kademlia DHT

BitTorrent – block exchange

Git versioning

Self-certifying filesystems

Reminder: Git object database

Commit object Tree object Blob object

./test.txt

./test.txt

./new.txt

./test.txt

./test.txt

./new.txt

./bak/test.txt

./new.txt

./test.txt

IPFS: Representing a filesystem in a DHT

● Everything is immutable

● All objects are self-certifying (files, links, folders, changes)

ID is computed based on object’s hash

● Any IPFS object (file, folder) is represented in the same way:

type IPFSObject struct {

// array of links
links []IPFSLink

// opaque content data
data []byte

}

type IPFSLink struct {

Name string // target’s name

Hash Multihash // ... hash

Size int // ... size
}

IPFS: Representing a file < 256kB

{
“Links”: [],
“Data”: “\u0008\u0002\u0012\rHello World!\n\u0018\r”
}

Also known as:

a blob !

IPFS: Representing a file > 256kB

{
“Links”: [

{“Name”: “”,“Hash”: “QmYSK2Jy...”,“Size”: 262158},
{“Name”: “”,“Hash”: “QmQeUqdj...”,“Size”: 262158},
{“Name”: “”,“Hash”: “Qma98bk1...”,“Size”: 178947}

],
“Data”: “\u0008\u0002\u0018* \u0010 \u0010 \n”
}

Also known as:

a list !

IPFS: representing a directory

Testing.txt

Parent

directory

Large file
Text file

(multiple

locations)

Also known as:

a tree !

./bigfile.js

./my_dir/my_file.txt

./my_dir/Testing.txt

./hello.txt

IPFS: Versioning

● Git-like

● Build a Merkle DAG (Directed Acyclic Graph)

● Build a “snapshot” of the current state

● Hash of both content and its parent commit’s hash

● Creates a Git-like log of versions

Also known as:

a commit !

IPFS: Naming (mutable) data

Objects are immutable, so:

● Use a separate namespace for mutable data

● Use mutable, signed pointers to immutable data

● Not content-addressable: advertise link on routing system

● Built-in limit to rollback attacks

Shifting Paradigm: Local-First Software

What do these 3 applications have in common ?

● Git

● Google Docs

● Apple Notes

They work offline and you (nearly) get the full experience !

How?

● Multi-version concurrency control

i.e. how do you “merge” versions that forked ?

Local-First Software

Goals

● Local client is first-class citizen

● Works offline

● Eventual consistency

● Ideally: can handle forks

What tool do we need to make this happen?

● Conflict-Free Replicate Data Types

Data structure + Algorithm + Protocol

Conflict-Free Replicated Data Types (CRDTs)

Various types:

● Values

● Counters

● Sets

Two main categories:

● Operation-based – commutative replicated data types (CmRDTs)

● State-based – convergent replicate data types (CvRDTs)

→ Theoretically equivalent

● Lists

● Log-based

● Text

State-based CRDT – Formalism

Let U be the set of update operations, and V the set of values.

A state-based CRDT is a 5-tuple (S, s0, q, u, m), where:

• S is the set of states;

• s0 ∈ S is the initial state;

• q : S → V is the query function

• u : S × U → S is the update function

• m : S × S → S is the merge function

Next steps - Readings

Mandatory:

● Incentives Build Robustness in BitTorrent

● Ivy: A Read/Write Peer-to-Peer File System

Recommended (Engineering):

● IPFS: Content Addressed, Versioned, P2P file system

● Peritext: A CRDT for Rich-Text Collaboration

... and a few others for the curious among you ...

→ Use Friday’s session to ask questions

33

	Search (hour 1)
	Slide 1: Decentralized Systems Engineering
	Slide 2: Miscellaneous updates (HW, evals)
	Slide 3: So far...
	Slide 4: Finishing up… Chord DHT – Possible attacks
	Slide 5: So far...
	Slide 6: Storing data (reliably)
	Slide 7: Decentralized Storage & Distribution
	Slide 8: CAP Theorem – A reminder a.k.a. Brewer’s Theorem
	Slide 9: Storage & distribution – Goals & Challenges (1/2)
	Slide 10: Storage & distribution – Goals & Challenges (2/2)

	BitTorrent
	Slide 11: Building BitTorrent : specifications
	Slide 12: BitTorrent : distribution
	Slide 13: Building BitTorrent : Sub-problems
	Slide 14: Distribution & integrity of (large) files
	Slide 15: BitTorrent : Bootstrapping / finding peers
	Slide 16: BitTorrent : Publishing new content
	Slide 17: BitTorrent : Performance & Incentives
	Slide 18: BitTorrent-inspired solutions
	Slide 19: BitTorrent limits

	IPFS
	Slide 20: IPFS – Inter-Planetary File System
	Slide 21: Reminder: Git object database
	Slide 22
	Slide 23: IPFS: Representing a filesystem in a DHT
	Slide 24: IPFS: Representing a file < 256kB
	Slide 25: IPFS: Representing a file > 256kB
	Slide 26: IPFS: representing a directory
	Slide 27: IPFS: Versioning
	Slide 28: IPFS: Naming (mutable) data

	CRDTs
	Slide 29: Shifting Paradigm: Local-First Software
	Slide 30: Local-First Software
	Slide 31: Conflict-Free Replicated Data Types (CRDTs)
	Slide 32: State-based CRDT – Formalism
	Slide 33: Next steps - Readings

